Lucentis Biosimilars: Byooviz and Cimerli

Lucentis Biosimilars

What is a Lucentis biosimilar?

Lucentis is a medication used in the treatment of a variety of conditions including wet-type macular degeneration, diabetic retinopathy, and retinal vein occlusion.  Lucentis biosimilars are less-expensive medications manufactured to work in a fashion similar to Lucentis. It is important to remember that Lucentis biosimilars are not identical medications to Lucentis. In the US, Lucentis biosimilars include Byooviz and Cimerli.  

How effective are Lucentis biosimilars?      

Lucentis was proven in extensive studies to be very effective. In wet-type macular degeneration, a large study showed that monthly injections of Lucentis over a two-year period offered a 90% chance of stable or improved vision. Similar benefits are seen in other retinal conditions as well. The biosimilars were approved for use by the FDA as they appear to be non-inferior.  Further research will reveal more details.  

What are the risks of Lucentis biosimilars? 

Severe complications are very rare, but risks of Lucentis injection include bleeding, infection, inflammation, retinal detachment, glaucoma, cataract, and loss of vision. There may be a small increased risk (1%) of stroke or heart attack with Lucentis. The risk of stroke may be related to concurrent illness and the older age of patients in which these medications are used. Pregnancy should be avoided while on Lucentis therapy.  All of these risks apply to biosimilars, as well.  Furthermore, the question of whether biosimilars pose additional (or less) risk will be determined over time.                    

Why change from Lucentis to a biosimilar medication?

Usually an insurance company prompts the need to change from Lucentis to a biosimilar medication to lower their costs.  This may be a disadvantage to signing up for a Medicare Advantage insurance plan.  When a doctor must change from Lucentis to a biosimilar, he may need to take precautions in order to reduce the risk of problems.  For example, he may initially inject Byooviz or Cimerli at 4-week intervals before attempting to extend the treatment interval in order to assure effectiveness.  He may monitor the patient more closely to identify inflammation or high eye pressure.  After injection, patients should report any new symptoms without delay.   

Are doctors given financial incentives to prescribe Cimerli and Byooviz?

Manufacturers of new medications often provide incentives in the form of rebates to doctors. To determine if your doctor receives large payments from drug companies, visit the CMS website and enter your doctor’s name in the search box. I take great pride in advocating for my patients in the selection of medications, rather than pander to the drug companies.

By Scott E Pautler, MD

For a telemedicine consultation with Dr Pautler, please send email request to spautler@rvaf.com. We accept Medicare and most insurances in Florida. Please include contact information (including phone number) in the email. We are unable to provide consultation for those living outside the state of Florida with the exception of limited one-time consultations with residents of the following states: Alabama, Arkansas, Connecticut, Georgia, Minnesota, and Washington.

Copyright ©2023 Designs Unlimited of Florida.  All Rights Reserved.

Vabysmo better than Eylea?

Yosemite/Rhine Studies: a critical analysis

The Yosemite and Rhine Studies were twin randomized, double-masked, multicenter non-inferiority trials comparing the efficacy of faricimab (Vabysmo) vs aflibercept (Eylea) in the treatment of diabetic macular edema.

The study abstract begins with the statement, “To reduce treatment burden and optimize patient outcomes in diabetic macular oedema, we present the 1-year results from two phase 3 trials of faricimab, a novel angiopoeitin-2 and vascular endothelial growth factor-A bispecific antibody.”  However, analysis of the data reveals the study report did NOT demonstrate reduced treatment burden at one year.  It did demonstrate potential non-inferiority of faricimab compared with aflibercept with an increased treatment burden in the faricimab arms of the studies. 

Treatment burden was greater in both faricimab treatment arms of both studies compared with aflibercept. Table 1 reveals 25% greater injections in the faricimab q8 week group compared with aflibercept.  The faricimab group received 10 injections at 52 weeks compared with aflibercept at 9 injections.  The faricimab group did not experienced a reduced treatment burden compared with aflibercept.  Moreover, the faricimab group sustained a more intense treatment burden to meet the “non-inferiority” assessment compared with aflibercept.  

Table 1. Injection schedule for faricimab (Fq8) and aflibercept (Aq8) q8 week study arms.

wk#1481216202428323640444852total
Fq81111110101010110
Aq8111110101010109

There was only one subgroup of eyes that received one less injection of faricimab at one year compared with aflibercept.  There were 63 eyes of 286 (22%) in Yosemite and 66 eyes of 308 (21%) in Rhine who underwent 7 faricimab injections within the group randomized to “personalized treatment interval” (PTI) compared with 8 injections in the aflibercept group.  Unfortunately, the visual and anatomic outcomes of this subgroup of faricimab eyes were reported a part of the entire PTI group, which overall had more injections than the aflibercept group. 

The primary outcome of the study was the number of letters of improvement on the standard ETDRS chart. However, because of the uneven staggered injection schedule between the q8 week treatments groups, the method to calculate the visual improvement outcome favored faricimab over aflibercept.  The study design called for averaging the measurements of visual improvement over a three-month time frame (i.e. at week 48, 52, and 56).  As a result, the three averaged measurements for faricimab (Fq8) was 4 weeks, 8 weeks, and 4 weeks post-injection (average 5.3 weeks), while the three measurements for aflibercept (Aq8) were 8, 4, and 8 weeks post injection (average 6.6 weeks).  Thus, the unevenly staggered injection schedule resulted in a final visual endpoint measurement inappropriately in favor of faricimab.  

Even in the subgroup of faricimab (Fpti) that touted one 16week treatment interval, the visual acuity measurements were taken at 16weeks, 4weeks, and 8 weeks post-injection.  This represents an average of 9.3 weeks post-injection; this is nowhere near the measurement taken at 16 weeks.  In addition, the acuity outcomes in the Fpti group were reported as a group without reporting the acuity gains made specifically by the subgroup of eyes extended to a 16-week interval.  Therefore, the reported acuity gains do not apply to this subgroup with extended treatment.       

A secondary outcome of the study was the central subfield macular thickness (CST).  This measurement shows the anatomic improvement in macular edema.  The slope of the thickness curve trended toward a more rapid decrease in both arms of faricimab compared with aflibercept during the monthly injection stage (initial loading stage).  Analysis of the results after the loading stage (monthly injections), both faricimab and aflibercept showed a similar jagged curve demonstrating a drop-off of treatment effect during the no-treatment month.  A similar jagged response is not seen in the Fpti group as the treatment intervals varied within that group.  The rebound in edema seen in both faricimab and aflibercept suggests the durability of the treatment effect may be similar.  These studies did not perform a direct comparison of faricimab and aflibercept on the same personalized treatment interval protocol.

Remarkably, these limitations of the study were not discussed in the published article and the FDA granted approval of faricimab for use in the United States based on these data drawn from an imperfect study design that favored faricimab.  More research is needed in order to determine if faricimab is truly non-inferior to aflibercept and whether faricimab may offer a reduced treatment burden.  

UPDATE Oct 2022: I have been using Vabysmo in the office. I am please with the results in patients with wet AMD in that I can extend the treatment interval further than with older drugs. However, patients with large serous pigment epithelial detachments (PED) appear to be at greater risk of vision loss from rips in the PED. I have not been impressed with superior effectiveness of Vabysmo in patients with diabetic retinopathy.

By Scott E. Pautler, MD

For a telemedicine consultation with Dr Pautler, please send email request to spautler@rvaf.com. We accept Medicare and most insurances in Florida. Please include contact information (including phone number) in the email. We are unable to provide consultation for those living outside the state of Florida with the exception of limited one-time consultations with residents of the following states: Alabama, Arkansas, Connecticut, Georgia, Minnesota, and Washington.

Copyright  © 2022 Designs Unlimited of Florida

Yosemite and Rhine Studies: an editorial

Faricimab was recently approved by the FDA for the treatment of diabetic macular edema (DME). It is the first drug which simultaneously blocks vascular endothelial growth factor A (VEGF-A) and angiopoietin-2 (Ang 2). The anti-VEGF-A action is shared with bevacizumab, ranibizumab, and aflibercept; and stabilizes microvascular permeability and inhibits neovascularization. The Ang 2 inhibition works via the angiopoietin and Tie signaling pathway to reduce microvascular permeability by a pathway independent of VEGF-A blockade. Preclinical studies suggested that faricimab might be more effective than simple anti-VEGF inhibition in treating diabetic macular edema. In particular, there were expectations for improvement over the status quo in duration of action. If similar efficacy with lesser treatment burden were possible, this would help overtaxed clinicians and patients and begin to close the real-world versus randomized trial performance gap.1

The results of two identical, phase 3 randomized clinical trials, YOSEMITE and RHINE, were recently published, allowing clinicians the opportunity to assess how the efficacy of faricimab matches the promise of the preclinical studies.2 There were 3 groups in the randomization: faricimab 6 mg q 8 weeks (F8), faricimab 6 mg with a personalized treatment interval (FPTI), and aflibercept 2 mg q 8 weeks (A8). The study authors reported the following in their paper:

  1. With A8 as the comparator, both F8 and FPTI were noninferior (4 letter margin) based on a primary outcome of mean change in best-corrected visual acuity at 1 year, averaged over weeks 48, 52, and 56.
  2. There were no differences in safety events among the 3 groups.
  3. In the FPTI group, more than 70% of patients achieved every-12-week dosing or longer at 1 year.
  4. Reductions in CST and proportions of eyes without center-involved DME (CI-DME) over 1 year consistently favored faricimab over aflibercept.
  5. Faricimab demonstrated a potential for extended durability in treating CI-DME.

Based on the evidence in the paper, are the claims substantiated? 

With respect to noninferiority of mean change in best corrected visual acuity, the answer is qualified by the authors’ method of measurement. Because the three groups got last injections at different times, there was no single visit for which assessment of final visual acuity was intuitive. Therefore, the authors averaged the visual acuities measured at 48, 52, and 56 weeks. For the F8 group, the 3 components of the average were 4 weeks post-injection (the measurements taken at 48 weeks), 8 weeks post-injection (the measurements taken at 52 weeks), and 4 weeks post-injection (the measurements taken at 56 weeks), implying that the average last visual acuity was at 5.33 weeks post-injection ([4+8+4]/3=5.33). For the A8 group, the 3 components of the average were 8 weeks post-injection (the measurements taken at 48 weeks), 4 weeks post-injection (the measurements taken at 52 weeks), and 8 weeks post-injection (the measurements taken at 56 weeks), implying that the average last visual acuity was at 6.66 weeks post-injection ([8+4+8]/3=6.66). That is, the A8 group was disadvantaged relative to the F8 group by virtue of the F8 group having more injections in the first year, and an injection nearer to the outcome measurement times. This issue might have been averted had the F8 group received the same 5 initial monthly injections as the A8 group.    

It is difficult to provide an analogous comparative calculation for the FPTI group. The relevant information is depicted in figure 3B, but the scale of the figure is microscopic, and only estimates can be made. For example, the YOSEMITE panel of figure 3B, the red-boxed subgroup, appears to comprise 63 patients. For these patients, the 3 components of the average were 16 weeks post-injection (the measurements taken at 48 weeks), 4 weeks post-injection (the measurements taken at 52 weeks), and 8 weeks post-injection (the measurements taken at 56 weeks), implying that the average last visual acuity was at 9.3 weeks post-injection ([16+4+8]/3=9.3). Likewise, for the RHINE panel of figure 3B, the red-boxed subgroup, appears to comprise 67 patients with the average last visual acuity at 9.3 weeks.  At the other extreme of the figure (the bottom) sits the group of eyes that could never be extended beyond 4 weeks.  For YOSEMITE and RHINE this group appears to comprise 19 and 23 patients, respectively. The average last visual acuity for these eyes would be 4 weeks. In between these extremes of the figure, one would need to do an analogous calculation for every row in the figure, pooling all the results for an overall average. This is clearly more than a reader can be asked to do. The authors should have done it and reported the result in the paper, to allow the reader to see if the outcome time for the FPTI group is comparable to the A8 group. The suspicion is that they are not comparable.

Regarding the claim that the safety results of the three groups were equivalent, we agree with the authors’ interpretation. There is no evidence that faricimab is less safe to use over the 52 weeks of follow-up reported.

The authors claim that over 70% of the FPTI group were able to enter the q 12 week dosing interval. The specific term they chose was “achieved” to signal this distinction. However, entering 12 week dosing is different from demonstrating that faricimab can sustain such intervals. The primary outcome at 52 weeks did not give enough time to determine if those eyes entering 12 week or longer durations could sustain that performance, or whether they would regress to require shorter interval injections. In YOSEMITE, 169 eyes (59%) and in RHINE, 172 eyes (56%) completed one 12wk interval to be assessed for successful completion. The reader has no idea if this proportion will be sustained in the second year of the trial, and it would be an unfounded assumption to expect the entrance to q12 week intervals to be maintained. This outcome will be of great interest when the 2-year results are reported. Only 22%/21% (Yosemite/Rhine) actually completed a 16-week interval and none were treated long enough to determine sustainability of this interval.

Another problem with the authors’ claim on duration of effect has to do with a form of spin, specifically type 3 spin, in the classification of Demla and colleagues.3 A reader might think that this achievement by faricimab distinguishes it from aflibercept, but that inference would not be warranted because of the study design. There was no aflibercept personalized treatment interval arm of the randomization, which would be required to make a claim that increased duration between injections was an advantage of faricimab. While true that a drug company investing in faricimab has no obligation to provide an opportunity for the competitor’s comparator drug to perform as well, the authors cannot claim that the feature displayed by faricimab is a differentiator worthy of a clinician’s choice as a deciding factor in the question of which drug to use. It is also true that the authors don’t make this claim differentiating the drugs, but in presenting asymmetric evidence as they do, an erroneous inference is easy to make, which we seek to avert.

The authors’ claim of superior drying effectiveness for faricimab is supported by the presented data, but unremarked by the authors was evidence of similar durations of drying action of faricimab and aflibercept. To see this, examine figure 3C. The slope of the thickness curve trended toward a more rapid decrease in both arms of faricimab compared with aflibercept during the monthly injection stage (initial loading stage).  In an analysis of the graphs after the loading stage (monthly injections), both faricimab and aflibercept showed a similar jagged curve demonstrating a drop-off of treatment effect during the no-treatment month. A jagged response is not seen in the FPTI group because the treatment intervals varied within that group.  The zig-zag rebound of edema seen in both faricimab (F8) and aflibercept (A8) groups suggests the durability of the treatment effect may be similar between the two drugs.  These studies did not perform a direct comparison of faricimab and aflibercept on the same personalized treatment interval protocol.

The authors’ contention that faricimab rendered a higher proportion of eyes free of CI-DME is warranted by the data they present.

Finally, the authors emphasize the potential of faricimab for lesser burden of treatment because of potential longer durability. This emphasis is unsupported by the evidence presented. The F8 group received 10 injections. The A8 group received 9 injections – hence no decreased burden favoring faricimab over aflibercept in this comparison. It is more complicated to analyze in the FPTI group because the needed information is not reported, but we can make some inferences. There were 63 eyes of 286 (22%) in Yosemite and 66 eyes of 308 (21%) in Rhine that achieved the opportunity to extend treatment; these eyes underwent a total of 8 faricimab injections at week 52.  This number represents the least number of scheduled injections and only one less than the aflibercept group. The remainder of eyes were scheduled to have more than 8 injections, but the pooled average is difficult to parse from figure 3B.  We can easily note that from the figure that the greatest number of injections at week 52 in this arm of the study was 14 injections in eyes that required monthly treatment (19 eyes (7%) in Yosemite, and 22 eyes (7%) in Rhine).  This is far more than the 9 injections of A8, and does not demonstrate a reduced treatment burden among eyes in the faricimab group compared with aflibercept. When the remainder of eyes between the extremes of figure 3B are added in to the calculation of average treatment burden, which we encourage the authors to report, we suspect that it was greater for the FPTI arm of the study than for A8, not less.  

In summary, YOSEMITE and RHINE provide data that faricimab as administered in the studies was equivalent to aflibercept in the primary visual outcome, and superior to aflibercept as given in the study in drying the macula. No data were presented supporting a claim that treatment burden is less with faricimab than aflibercept. The published data show that a proportion of eyes can be managed with a reduced injection burden with faricimab, but provide no evidence that this would differentiate faricimab from aflibercept were aflibercept plugged into the same personal treatment interval algorithm. There was no arm of the study that would allow such a comparison to be made. The published data substantiate that faricimab has a greater macular drying effect than aflibercept, but the see-saw central subfield thickness curve in the non-loading phase of the first year suggests that the duration of drying by faricimab is no greater than with aflibercept.

The FDA has approved faricimab for the treatment of CI-DME based on YOSEMITE and RHINE. Retinal specialists will be making choices of which drug to use. An economic perspective will enter into the decision. The clinical decision will not be based exclusively on efficacy. The offered average costs for aflibercept and faricimab to the editorialists are $1747 and $2168, respectively. Is the $441 differential cost a reasonable price to pay for the documented differences in drug performance? Our opinion is no. There is no published difference in visual outcomes, nor any published difference in durability, because it wasn’t checked. There is a difference in macular drying, analogous to the superior drying effect of aflibercept over bevacizumab in the better-vision group of protocol T (eyes with CI-DME)or in the aflibercept versus bevacizumab group in SCORE-2 (eyes with central retinal vein occlusion with macular edema).4,5 We, and many others, did not think that differences warranted the use of aflibercept over the less expensive bevacizumab in cases similar to those in the better seeing group of protocol T or eyes like those studied in SCORE-2, nor do we think that drying difference seen in YOSEMITE and RHINE between faricimab and aflibercept is reason to choose the more expensive drug. We congratulate the authors of these studies for providing ophthalmologists with new options for treating diabetic macular edema, but nothing they have published suggests that this option marks a milestone in reducing treatment burden in DME. The 2-year results will be more informative for decision-making than the 1-year results, and we encourage the authors to remedy the flaws in their year -1 results data presentation so that the 2-year data are more useful.

By David J. Browning, MD, PhD and Scott E. Pautler, MD

References

   1.   Kiss S, Liu Y, Brown J, et al. Clinical utilization of anti-vascular endothelial growth-factor agents and patient monitoring in retinal vein occlusion and diabetic macular edema. Clin Ophthalmol 2014;8:1611-1621.

   2.   Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022;DOI:https://doi.org/10.1016/S0140-6736(22)00018-6.

   3.   Demla S, Shinn E, Ottwell R, Arthur W, Khattab M, Hartwell M, Wright DN, Vassar M. Evaluaton of “spin” in the abstracts of systematic reviews and meta-analyses focused on cataract therapies. Am J Ophthalmol 2021;228:47-57.

   4.   Diabetic Retinopathy Clinical Research Network, Welss JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush AN, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FJ, Friedman SJ, Melia M, Pieramici D, Sun JK, Beck RW. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 2015;372:1193-1203.

   5.   Scott IU, VanVeldhuisen PC, Ip MS, et al, SCORE2 Investigator group. Effect of bevacizumab vs aflibercept on visual acuity among patients with macular edema due to central retinal vein occlusion: the SCORE2 randomized clinical trial. JAMA 2017;317:2072-2087.

Vabysmo (faricimab) Therapy

See Anatomy of the Eye

What is Vabysmo therapy?

            Vabysmo therapy (pronounced, “vah-BYE-smo”) is a treatment for wet-type macular degeneration and diabetic macular edema. It involves repeated injections of medication into the eye to stop abnormally leaky blood vessels. Vabysmo is the trade name of the medication and faricimab is the research/generic name. On January 28, 2022, the FDA approved Vabysmo for use in the United States based on standard phase 3 study results (Yosemite/Rhine Studies for diabetic macular edema and Tenaya/Lucerne Studies for wet macular degeneration).    

How effective is Vabysmo therapy?      

            Vabysmo may last longer than other drugs currently available to treat these conditions. However, it has been my experience that Vabysmo offers little additional benefit in diabetic macular edema. I currently prefer Lucentis in patients treated for diabetic macular edema. 

            In wet-type macular degeneration (wAMD), Vabysmo does appear to last longer than other currently approved medications in some patients. However, there appears to be an increased risk of loss of vision from RPE tear in patients with serous retinal pigment epithelial detachment in the setting of age-related macular degeneration.    

What are the risks of Vabysmo therapy? 

            Severe complications are very rare, but risks of Vabysmo injection include bleeding, infection, retinal detachment, glaucoma, cataract, and loss of vision/loss of the eye. The risk of retinal detachment is about 1 in 5,000 injections, but the visual results are poor despite surgical repair. In initial studies there appeared to be a low risk (1.8%) of stroke with this type of therapy. The risk of stroke may be related to the older age of patients in which it is used. Further investigation will provide more information. Non-infectious inflammation is less common with Vabysmo than brolucizumab (Beovu), another drug that offered drug treatment at reduced intervals. Although rare, inflammation did occur in Vabysmo (1-2% of cases) more than twice as often as it did with Eylea (1% or less). Pregnancy should be avoided while on Vabysmo therapy. 

What do I expect after a Vabysmo injection?

Be careful not to rub the eye after the injection because the eye may remain anesthetized for several hours. You may be given eye drops and instructions on how to use them. Physical activity is not limited after the injection. Tylenol or Ibuprofen may be used if there is discomfort, but severe pain should be reported to your doctor without delay. It is normal to experience a red area on the white of the eye, which disappears in one to two weeks. If you have any questions or concerns, please call the office.

UPDATE October 2022: I have been using Vabysmo in the office. I am pleased with the results in patients with wet AMD in that I can extend the treatment interval further than with older drugs. These findings are in concert with a recent two-year report of the Tanaya Study at the American Academy of Ophthalmology. However, patients with large serous pigment epithelial detachments (PED) appear to be at greater risk of vision loss from rips in the PED. In contrast to eyes with macular degeneration, I have not been impressed with superior effectiveness of Vabysmo in patients with diabetic retinopathy.

By Scott E. Pautler, MD

For a telemedicine consultation with Dr Pautler, please send email request to spautler@rvaf.com. We accept Medicare and most insurances in Florida. Please include contact information (including phone number) in the email. We are unable to provide consultation for those living outside the state of Florida with the exception of limited one-time consultations with residents of the following states: Alabama, Arkansas, Connecticut, Georgia, Minnesota, and Washington.

Copyright ©2022 Designs Unlimited of Florida.  All Rights Reserved